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ABSTRACT: The success of the National Severe Storms Laboratory’s (NSSL) experimental Warn-on-Forecast System
(WoFS) to provide useful probabilistic guidance of severe and hazardous weather is mostly due to the frequent assimilation
of observations, especially radar observations. Phased-array radar (PAR) technology, which is a potential candidate to re-
place the current U.S. operational radar network, would allow for even more rapid assimilation of radar observations by
providing full-volumetric scans of the atmosphere every ;1 min. Based on previous studies, more frequent PAR data as-
similation can lead to improved forecasts, but it can also lead to ensemble underdispersion and suboptimal observation as-
similation. The use of stochastic and perturbed parameter methods to increase ensemble spread is a potential solution to
this problem. In this study, four stochastic and perturbed parameter methods are assessed using a 1-km-scale version of the
WoFS and include the stochastic kinetic energy backscatter (SKEB) scheme, the physically based stochastic perturbation
(PSP) scheme, a fixed perturbed parameters (FPP) method, and a novel surface-model scheme blending (SMSB) method.
Using NSSL PAR observations from the 9 May 2016 tornado outbreak, experiments are conducted to assess the impact of
the methods individually, in different combinations, and with different cycling intervals. The results from these experiments
reveal the potential benefits of stochastic and perturbed parameter methods for future versions of the WoFS. Stochastic
and perturbed parameter methods can lead to more skillful forecasts during periods of storm development. Moreover, a
combination of multiple methods can result in more skillful forecasts than using a single method.

SIGNIFICANCE STATEMENT: Phased-array radar technology allows for more frequent assimilation of radar ob-
servations into ensemble forecast systems like the experimental Warn-on-Forecast System. However, more frequent ra-
dar data assimilation can eventually cause issues for prediction systems due to the lack of ensemble spread. Thus, the
purpose of this study is to explore the use of four stochastic and perturbed parameter methods in a next-generation
Warn-on-Forecast System to generate ensemble spread and help prevent the issues from frequent radar data assimila-
tion. Results from this study indicate the stochastic and perturbed parameter methods can improve forecasts of storms,
especially during storm development.

KEYWORDS: Severe storms; Numerical weather prediction/forecasting; Short-range prediction; Data assimilation;
Ensembles; Stochastic models

1. Introduction

NOAA’s experimental Warn-on-Forecast System (WoFS;
Stensrud et al. 2009, 2013; Wheatley et al. 2015; Skinner et al.
2018; Jones et al. 2020), which is developed and tested at the
National Severe Storms Laboratory (NSSL), is a regional, on-
demand, rapidly cycled, multi-physics ensemble data assimila-
tion and prediction system designed to provide probabilistic
forecast guidance of severe convective weather on watch-
to-warning scales to, e.g., National Weather Service forecasters,
emergency managers, and broadcast meteorologists. While the
current version of the experimental WoFS is almost ready for
transitioning into NWS operations after several successful

years of producing useful probabilistic forecasts (e.g., Gallo
et al. 2022; Burke et al. 2022), work is already underway at
NSSL in developing the next-generation WoFS, which in-
cludes moving from 3- to 1-km horizontal grid spacing (Wang
et al. 2022; Kerr et al. 2023). In addition to the increase in grid
resolution, an increase in both the spatial and temporal density
of assimilated radar observations is also being explored for the
next-generation WoFS.

Radar observations are crucial to the success of WoFS due
to the intra-storm information they provide and their ability
to quickly spin up storms in the model analyses and forecasts
through data assimilation (DA; Yussouf et al. 2013; Wheatley
et al. 2015; Jones et al. 2015). The current experimental WoFS
assimilates gridded radar observations every 15 min, but
Stratman et al. (2020) determined that more frequent assimi-
lation of radar data could benefit the WoFS by more quickly
spinning up storms in the model, leading to better, more
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accurate forecasts at longer lead times. For that study, they as-
similated data from NSSL’s National Weather Radar Testbed
(NWRT) phased-array radar (PAR; Forsyth et al. 2005;
Weber et al. 2007; Weber et al. 2021), which is a potential can-
didate to replace the current aging WSR-88D radars due to its
ability to provide full volumetric scans of the surrounding at-
mosphere every ;1 min instead of every ;5 min with the
WSR-88D radars. A common existing problem for storm-
scale ensemble forecast systems, including the current experi-
mental WoFS, is ensemble underdispersion (e.g., Romine
et al. 2014), which can result in filter divergence and model
imbalances. Thus, while a PAR system would enable the abil-
ity to more frequently assimilate full volumes of radar obser-
vations, even more frequent DA cycling could further
exacerbate the underdispersion problem and eventually lead
to poorer analyses and forecasts of severe storms.

Numerous techniques have been developed over the last
couple of decades to help mitigate ensemble underdispersion
by accounting for different sources of error within the data as-
similation and model systems. Some of the techniques, such
as additive noise (Dowell and Wicker 2009; Sobash and
Wicker 2015) and covariance inflation (Zhang et al. 2004;
Houtekamer and Mitchell 2005; Anderson 2009; Whitaker
and Hamill 2012), were developed to address ensemble
underdispersion due to frequent DA. Another way to in-
crease ensemble spread while accounting for various sys-
tematic errors is by adding perturbations to the initial
(Leutbecher and Palmer 2008; Johnson and Wang 2016; Lang
et al. 2019; Schwartz et al. 2020, 2022) and lateral-boundary
conditions (Vié et al. 2011; Romine et al. 2014; Zhang 2019),
which can improve ensemble forecasts of severe and hazard-
ous weather. Some common methods for operational ensem-
ble forecast systems to account for model errors and improve
ensemble spread include multi-model (e.g., Candille 2009;
Roberts et al. 2019), multi-physics (e.g., Stensrud et al. 2000;
Fujita et al. 2007; Meng and Zhang 2007; Charron et al. 2010;
Wheatley et al. 2015; Jones et al. 2020), and multi-parameter
(e.g., Murphy et al. 2004; Hacker et al. 2011; Thompson et al.
2021) approaches. The current experimentalWoFS (Jones et al.
2020) uses a combination of these methods, including mixed
physics, perturbations to initial and lateral-boundary condi-
tions, additive noise, and prior adaptive covariance inflation
(Anderson 2009). However, even though the WoFS is a multi-
physics ensemble, it currently does not use any techniques}e.g.,
stochastic or perturbed parameters}that account for uncer-
tainty within each of those model physics (see e.g., Leutbecher
et al. 2017).

There are numerous ways to introduce stochasticity and un-
certainty into the model physics. For this study, four stochas-
tic and perturbed parameter methods are explored using the
PAR-observed 9 May 2016 tornado outbreak with an experi-
mental 1-km-scale version of the WoFS. These methods
include the stochastic kinetic energy backscatter (SKEB)
scheme (Berner et al. 2009, 2011), the physically based sto-
chastic perturbations (PSP) scheme using the planetary
boundary layer schemes (Kober and Craig 2016; Rasp et al.
2018; Hirt et al. 2019), a fixed perturbed parameters (FPP)
method using the microphysics scheme (Hacker et al. 2011;

Christensen et al. 2015), and the surface-model scheme blend-
ing (SMSB) method, which is a novel technique introduced
here that blends physical schemes in the land surface model.
These four stochastic and perturbed parameter methods will
be detailed in the following section. In section 3, an overview
of the 9 May 2016 PAR observations will be described along
with the data assimilation and forecast system, experiments,
and evaluation methods. Results from the stochastic and per-
turbed parameter methods’ experiments will be presented in
section 4 followed by a summary and discussion of this study
in the final section.

2. Stochastic and perturbed parameter methods

a. SKEB scheme

One of the common methods to introduce model uncer-
tainty with stochastic perturbations is with the SKEB scheme
(Berner et al. 2009, 2011). It is currently used in several opera-
tional ensemble prediction systems, including the National
Centers for Environmental Prediction (NCEP)’s Global En-
semble Forecast System (GEFS; Zhou et al. 2022). The
SKEB scheme used here was advanced and simplified by Ber-
ner et al. (2011) for the Advanced Research version of the
Weather Research and Forecasting (WRF-ARW; Skamarock
et al. 2008) Model following previous work by Shutts (2005)
and Berner et al. (2009). In short, the SKEB scheme accounts
for the variability in subgrid-scale processes by using a first-
order autoregressive process to introduce spatially and tem-
porally correlated perturbations in spectral space to the
tendency terms of potential temperature and the rotational
component of the horizontal wind via the streamfunction at
each time step. As in Berner et al. (2011), the same perturba-
tion pattern and values are used at all model levels.

The SKEB scheme was extensively tested and tuned for the
1-km-scale experiments by varying the backscatter rates, de-
correlation times, and spectral slopes for perturbations for
both streamfunction and potential temperature (not shown).
The final parameter settings used in the study are detailed in
Table 1 and are similar to previous studies that span a spec-
trum of spatial and temporal scales (e.g., Berner et al. 2011,
2012; Romine et al. 2014; Duda et al. 2016; Gasperoni et al.
2020), which suggests the generality of the SKEB parameter
settings. Even so, the decorrelation time is smaller than
those previous studies given that the forecasts for this study
are shorter and for the next few hours as opposed to
the next day or longer. An example of the spatial pattern of
the perturbations for both components of the wind and

TABLE 1. SKEB scheme parameters and their values used in the
experiments.

SKEB parameter Value

Backscatter rate for streamfunction 1 3 1025

Backscatter rate for potential temperature 5 3 1026

Decorrelation time 1800 s
Spectral slope for perturbations 21.83
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potential temperature for a single ensemble member half-
way through the decorrelation period (i.e., 900 s) are shown
in Figs. 1a–c. By the end of the decorrelation time of 1800 s,
these tendency perturbations lead to changes in the wind
and potential temperature fields of around 60.6 m s21 and
60.3 K, respectively (Figs. 1d–f).

b. PSP scheme

To help promote convection initiation in convection-
allowing models, Kober and Craig (2016) proposed the
PSP scheme as a way to reintroduce missing variability
onto the grid scale within the boundary layer. The PSP scheme
adds stochastic perturbations on the model’s smallest resolvable
scale with amplitudes proportional to the subgrid standard devi-
ations of variables provided by the model’s turbulence scheme.
For this study, the following mathematical formulation from
Rasp et al. (2018), which is a modification of the formula in
Kober and Craig (2016), is used to introduce perturbations to
the temperature T, water vapor mixing ratio qv, and vertical ve-
locity w tendencies:

F

t

( )
PSP

5 aFh
1

teddy

leddy
Dxeff

�����
F′2

√
, (1)

where F is the variable being perturbed, aF is the tuning pa-
rameter for each variable, h is the 2D stochastic perturbation
field, teddy is the representative eddy lifetime, leddy is the typi-
cal size of the largest eddies in a daytime convective boundary

layer, Dxeff is the effective model resolution, and

�����
F′2

√
is the

subgrid standard deviation of T, qv, and w provided by the
turbulence schemes. The values for the PSP parameters used
in the study are listed in Table 2 and are discussed next.

Ideally, the tuning parameter aF would be exactly 1 (Kober
and Craig 2016), but previous studies that tested the PSP
scheme found values greater than 1 worked best (Kober and
Craig 2016; Rasp et al. 2018; Hirt et al. 2019). For this study,
numerous sensitivity tests were completed, and the best re-
sults were achieved with aF , 1 for all three variables. Addi-
tionally, it was found that using smaller tuning parameter
values for T and qv than for w gave the best results for this

FIG. 1. (top) Example of the tendency perturbations for a single ensemble member for the (a) u component of the wind (m s22),
(b) y component of the wind (m s22), and (c) potential temperature (K s21) from the SKEB scheme. (bottom) Example of the change in
the (d) u component of the wind (m s21), (e) y component of the wind (m s21), and (f) potential temperature (K) fields for the same en-
semble member after 1800 s, which is the decorrelation time of the perturbations.
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case. These values are different from the previous studies,
likely due to this study being the first to implement the PSP
scheme into the WRF-ARW Model for three different bound-
ary layer schemes and to use it in a mixed-physics ensemble
prediction system. Following Rasp et al. (2018), leddy and teddy
are set to 1000 m and 600 s, respectively, to represent the larg-
est eddy sizes of a typical daytime convective boundary layer
and their lifetime. Following the previous studies using the

PSP scheme (Kober and Craig 2016; Rasp et al. 2018; Hirt
et al. 2019), Dxeff is set to 5Dx or 5000 m.

The stochastic perturbation field h has a mean of 0 with
a gridpoint standard deviation of 1. The stochastic perturb-
ations have a correlation length scale of 5000 m to approxi-
mate the smallest model-resolvable scale. The stochastic
perturbation fields have a decorrelation time of 600 s to ap-
proximate the typical eddy lifetime and are evolved using a
first-order autoregressive process similar to one used for the
SKEB scheme in WRF-ARW. Hirt et al. (2019) showed that
evolving the perturbation fields rather than holding their val-
ues constant, as in Kober and Craig (2016) and Rasp et al.
(2018), resulted in comparable results. However, they con-
cluded the evolving perturbation fields are still preferred since
they are physically more realistic. Perturbations greater than
three standard deviations are set to 63. The variances F′2 for
T, qv, and w are calculated for the three boundary layer
schemes used in this study following the level 2.5 model of
Mellor and Yamada (1982) and Eqs. (4)–(6) in Kober and
Craig (2016). Examples of the PSP scheme’s tendency

TABLE 2. PSP scheme parameters and their values.

PSP parameter Values

Tuning parameter aF 0.5 (w), 0.05 (T, qv)
Representative eddy lifetime teddy 600 s
Largest typical eddy size leddy 1000 m
Effective model resolution Dxeff 5000 m
Length scale 5000 m
Decorrelation time 600 s
Gridpoint standard deviation 1.0
Standard deviation cutoff 3.0

FIG. 2. (top) Example of the tendency perturbations for a single ensemble member for (a) potential temperature (K s21), (b) water
vapor mixing ratio (kg kg21 s21), and (c) vertical velocity (m s22) produced by the PSP scheme. (bottom) Example of the change in the
(d) potential temperature (K), (e) water vapor mixing ratio (kg kg21), and (f) vertical velocity (m s21) fields for the same ensemble mem-
ber after 1800 s of model integration.
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perturbations for T, qv, and w and the changes to these fields
after 30 min are shown in Fig. 2 and highlight how the scheme
adds larger perturbations to areas with more variance in T,
qv, and w to help promote convection initiation. Also, the
same perturbation pattern is used at all model levels just like
the SKEB scheme, but unlike the SKEB scheme, the values
can vary with model level with the largest perturbations often
residing in the boundary layer (not shown).

c. FPP method

We account for uncertainty in the microphysics scheme
with a simple fixed perturbed parameter method similar to
the one used in Christensen et al. (2015). In the FPP method,
parameters are randomly determined within a specified range
and held constant through the forecast model integration. As
in the current experimental WoFS (Jones et al. 2020), the
NSSL two-moment microphysics scheme (Mansell et al. 2010)
is used for this study’s ensemble prediction experiments.
While several microphysics parameters can be perturbed,
we settled on five parameters that in combination generally
give optimal spread and skill based on preliminary testing: the
base cloud condensation nuclei concentration (ccn), the shape
parameters for graupel and rain size distributions (alphah and
alphar, respectively), and the graupel–droplet and hail–
droplet collection efficiencies (ehw0 and ehlw0, respectively).
The parameter ranges are specified in Table 3 and are reason-
ably set based on previous studies (e.g., Mansell and Ziegler
2013 and T. Mansell, NOAA 2022, personal communication).
Latin hypercube sampling with multidimensional uniformity
(Deutsch and Deutsch 2012) is used to determine the fixed
perturbed parameter values. This method ensures the full pa-
rameter phase space is adequately sampled and avoids clustering
of randomly determined parameter values. While the FPP
method results in more ensemble spread of microphysics-related
variables in areas where model storms exist, it can also increase
the ensemble spread of other model state variables, such as po-
tential temperature. An example of the impact of the FPP
method on the ensemble spread of composite reflectivity and
near-surface potential temperature after an hour of model inte-
gration is shown in Fig. 3.

d. SMSB method

A novel approach is applied to represent uncertainty within
the land surface model, implemented via member-specific
blending of different physical schemes within the model. The
surface-model scheme blending (SMSB) method is used with
the Noah land surface model with multiple-physics (Noah-

MP; Niu et al. 2011; Yang et al. 2011; He et al. 2023) because
of the numerous available physical scheme options. In this
study, we blend the two available physical scheme options for
both canopy stomatal resistance and lower boundary condi-
tion of soil temperature. We similarly blend the three avail-
able physical scheme options for both radiation transfer and
soil moisture factor for stomatal resistance. Those schemes
are blended together by first computing the associated param-
eters1 for each of the physical scheme options. Next, these pa-
rameters are blended together by computing weighting
coefficients for each physical scheme option, n, using the in-
verse distance weighting function:

wgtn 5

1
dn

1
d1

1 · · · 1 1
dN

, (2)

where N is the total number of available schemes for a partic-
ular physical process (here N is 2 or 3). The distances dn used
in the weighting of each physical scheme option are computed
using the equation:

dn 5

�����������������������������������
(1 1 r2) 2 2r cos u 2

2p
n

( )√
, (3)

where r and u are the radial and angular coordinates, respec-
tively. These polar coordinates are stochastically determined for
each ensemble member and physical scheme using Latin hyper-
cube sampling with multidimensional uniformity (Deutsch and
Deutsch 2012). To ensure uniform sampling, r uses the square
roots of the random values and has a range of [0, 1], while u has
a range of [0, 2p]. These member-specific radial and angular
coordinates are held fixed for all of the experiments using
SMSB in this study. The resulting weights are also fixed across
the domain for a given ensemble member and physical
scheme. However, the blended parameters vary by grid point
due to the spatial heterogeneity of the fields used to compute
the parameters.

An example of the impacts of the SMSB method on four
near-surface model state variables for a single ensemble member
and on the ensemble spread for those same variables after
30 min of model integration are shown in Fig. 4. This example
highlights that the impact of the SMSB method on the variables
and their spread varies by location depending on the surface
characteristics, such as land use. For example, the ensemble
spread of the near-surface wind is generally smaller in the west-
ern part of the domain, which is mostly grassland, when using
the SMSB method, while the eastern part of the domain, which
is mostly woody savanna, has larger ensemble spread.

TABLE 3. NSSL two-moment microphysics parameters and their
ranges of values.

Microphysics parameter Parameter ranges

ccn (m23) [0.3 3 109, 1.3 3 109]
alphah [0.0, 3.0]
alphar [0.0, 2.5]
ehw0 [0.4, 1.0]
ehlw0 [ehw0, 1.0]

1 The parameters for canopy stomatal resistance include sunlit
and shaded leaf photosynthesis and sunlit and shaded leaf stoma-
tal resistance. The parameter for lower boundary condition of soil
temperature is energy influx from soil bottom. The parameters for
radiation transfer include gap fraction for diffuse light and total
gap fraction for direct beam. The parameter for lower boundary
condition of soil temperature is the soil water transpiration factor.
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3. Experiment design

a. PAR observations

During the 9 May 2016 Oklahoma tornado outbreak, 12
tornadoes, including one rated EF4 and three rated EF3,

were produced by multiple supercell storms over the course
of a few hours beginning around 2100 UTC (NOAA/NWS
2016). Unfortunately, two people were killed by the torna-
does along with a few injuries. For this study, we will focus on
the first two tornadic supercells given their proximity to the

h

FIG. 4. (top) Example of the change in the near-surface (a) u component of the wind (m s21), (b) y component of the wind (m s21),
(c) potential temperature (K), and (d) water vapor mixing ratio (kg kg21) fields for the same ensemble member after 1800 s of model inte-
gration. (bottom) Example of the difference in ensemble spread of near-surface (e) u component of the wind (m s21), (f) y component of
the wind (m s21), (g) potential temperature (K), and (h) water vapor mixing ratio (kg kg21) fields after 1800 s of model integration.

FIG. 3. Example of the difference in ensemble spread of (a) composite reflectivity (dBZ) and (b) near-surface poten-
tial temperature (K) with and without using the FPP method after 1 h of model integration. Green colors indicate
where the FPP method added ensemble spread.
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NWRT PAR, which began scanning around 1800 UTC and
concluded operations shortly before 2300 UTC. The first tor-
nadic supercell of the event (S1) began developing around
2000 UTC (Fig. 5a) and first produced an EF4 tornado near
Katie, Oklahoma (T1; 2106–2127 UTC; Fig. 5c). After a brief
respite, S1 then produced an EF3 tornado (T2; 2134–
2217 UTC; Fig. 5d), which passed to the north of Sulphur,
Oklahoma. As S1 began to weaken, a new tornadic supercell
(S2) developed to its southeast and first produced an EF3
(T3; 2218–2236 UTC; Fig. 5f). The second tornado by S2 was
rated an EF1 (T4; 2246–2319 UTC). In addition to the torna-
does, these supercells also produced damaging hail up to the
size of baseballs (2.75 in. or 7 cm in diameter).

PAR technology allows for faster sampling of weather since
the radar beams are electronically steered via a set of radiat-
ing elements rather than mechanically aimed using a dish,
which is required to rotate and tilt to fully sample the atmo-
sphere (Weber et al. 2021). Because of the electronically
steered beams, a PAR typically samples a single 908 volumet-
ric sector in plan position indicator mode every ;1 min.

However, for this event, the NWRT PAR was operated in
range–height indicator mode while sampling a 1208 sector. To
sample a larger sector, two adjacent 608 sectors were sampled
by rotating the PAR back and forth 608 after each subsector
scan. Thus, full volumetric scans with 14 tilts ranging from
0.518 to 19.508 were produced every 90–100 min instead of ev-
ery;1 min. Additionally, the scanning sector was shifted dur-
ing the event to follow the storms as they developed south of
the radar and moved eastward (Fig. 5).

b. Data assimilation and forecast system

The experiments in this study are completed using an en-
semble data assimilation and forecast system similar to cur-
rent experimental versions of the WoFS (e.g., Jones et al.
2020; Kerr et al. 2023). As with those systems, the Advanced
Weather Research and Forecasting (WRF-ARW) Model
(Skamarock et al. 2008) and the Development Testbed
Center’s ensemble square root filter (EnSRF; Whitaker and
Hamill 2002) within the Gridpoint Statistical Interpolation
(GSI) system (Kleist et al. 2009; Hu et al. 2016) are used to

FIG. 5. (a)–(f) NWRT PAR composite reflectivity observations from six times during the 9 May 2016 tornadic supercell event in
Oklahoma. The paths of the first four EF11 tornadoes are chronologically annotated with T1, T2, T3, and T4 in (a). Black stars in (c) and
(d) highlight the locations of Katie, OK, and Sulphur, OK, respectively.
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generate ensemble analyses and forecasts of storms. The WoFS-
like system has 36 ensemble members for data assimilation
cycling and the free forecasts and is initialized at 1800 UTC using
1-h forecasts initialized from the experimental 36-member
1700 UTC High-Resolution Rapid Refresh ensemble’s
(HRRRE; Benjamin et al. 2016; Kalina et al. 2021; Dowell et al.
2022; James et al. 2022), which has 3-km horizontal grid spacing.
The lateral-boundary conditions (LBCs) are provided by nine
members of the 1500 UTC HRRRE, as in Skinner et al. (2018)
for the 2017 experimental system. The 9 HRRRE members ro-
tated through four times each in increasing sequential order (i.e.,
ensemble members groups 1–9, 10–18, 19–27, and 28–36 each use
the nine HRRREmembers).

The WoFS-like ensemble experiments are conducted on a
301 3 301 gridpoint domain (Fig. 6a) with 1-km horizontal
grid spacing and 51 vertical levels. Data assimilation cycling,
which is the process of repeatedly assimilating new observa-
tions and advancing the ensemble forecasts, is completed
from 1800 to 2130 UTC (Fig. 6b). Ensemble forecasts are
then initialized every 30 min from 2000 to 2130 UTC and

integrated out until 2300 UTC. The physical parameterization
schemes used in the ensemble forecasts for each member are
the same as those used in the experimental 1-km-scale WoFS
(Kerr et al. 2023), except that the Shin–Hong scale-aware
boundary layer (SH; Shin and Hong 2015) scheme is used in
place of the Yonsei University scheme to allow for the use of
the PSP scheme. All members use the NSSL two-moment
microphysics (Mansell et al. 2010) and Noah-MP (Niu et al. 2011;
Yang et al. 2011) schemes. Physics diversity among the ensemble
members (Table 4) is created by using the SH, Mellor–Yamada–
Janjić (MYJ; Janjić 2001), andMellor–Yamada–Nakanishi–Niino
(MYNN; Nakanishi and Niino 2009) schemes for the planetary
boundary layer, the Dudhia (Dudhia 1989) and Rapid Radiative
Transfer Model–Global (RRTMG; Iacono et al. 2008) schemes
for shortwave radiation, and the Rapid Radiative Transfer Model
(RRTM; Mlawer et al. 1997) and the RRTMG schemes for long-
wave radiation.

To focus on the impact of stochastic and perturbed parame-
ter methods on the rapid assimilation of radar data, only PAR
and Oklahoma Mesonet observations are assimilated. The

FIG. 6. (a) Model domain for experiments with PAR and KTLX locations (light blue and
black circles, respectively), Oklahoma Mesonet locations (blue diamonds), and tornado paths
(brown shading) overlaid. Dashed gray box outlines the area where the ensemble fraction skill
score is computed. (b) Schematic of experiment time line along with an associated schematic of
the tornado occurrence times.
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Mesonet observations that are assimilated include 1.5 m AGL
temperature, 1.5 m AGL dewpoint temperature, surface pres-
sure, and 10 m AGL u- and y-wind components. Before they
are able to be assimilated, the raw PAR reflectivity and radial
velocity observations are processed using the Warning
Decision Support System–Integrated Information (WDSS-II;
Lakshmanan et al. 2007) program suite to quality control the
radar data, dealias the radial velocity fields, and interpolate
the observations onto a 1-km grid with 13 vertical levels,
which consists of levels every 500 m for the 500–3000 m MSL
layer and every 1000 m for the 3000–10 000 m MSL layer. Re-
flectivity intensities less than 15 dBZ are set to 0 dBZ and are
thinned to a 4-km grid. As in Stratman et al. (2020), clear-air
reflectivity from the Twin Lakes, Oklahoma, WSR-88D radar
(KTLX) is used in the domain area outside of the PAR sec-
tor. Radial velocity observations are only assimilated in areas
where reflectivity exceeds 15 dBZ. To avoid any potential is-
sues with assimilating radar observations near the domain
edges, radar observations within 30 km of the domain edges
are not assimilated. The assumed observation errors for all
Mesonet and PAR observations are listed in Table 5 along
with the observations’ horizontal and vertical localization
radii, which are used in the Gaspari and Cohn (1999) localiza-
tion function.

c. Experiments

The experiments in this study are designed to explore dif-
ferent ways of using stochastic and perturbed parameter
methods with the goal of helping guide development and im-
plementation of these methods into future generations of the
WoFS. In the first set of experiments, the stochastic and per-
turbed parameter methods are individually assessed by run-
ning experiments with 5-min cycling intervals for each

method and comparing them to a Control experiment, which
does not use stochastic or perturbed parameter methods
(Table 6). Motivated by previous studies which found combin-
ing multiple methods generally led to better results than any
single method (e.g., Jankov et al. 2017, 2019), another set of
experiments is designed using either a combination of all of
the stochastic and perturbed parameter methods (AllStoch)
or a combination of only three of the methods (NoSKEB,
NoPSP, NoFPP, NoSMSB). To see how the impact of the sto-
chastic and perturbed parameter methods changes with DA
cycling interval, experiments similar to the Control and one of
the better performing combination experiments (i.e., NoPSP)
are conducted using 2.5- and 15-min cycling intervals
(Control2.5, NoPSP2.5, NoPSP15, Control15). For all of the
stochastic and perturbed parameter experiments, the stochas-
tic and perturbed methods are used during both the data as-
similation cycling and the free forecasts.

d. Evaluation methods

Several subjective and objective approaches are taken to
assess the impacts of the stochastic and perturbed parameter
methods and whether any of those impacts could be beneficial
for systems, such as the current and future generations of
WoFS. To assess any changes in ensemble error and spread,
observation-space diagnostics are computed for different ob-
servation types during the data assimilation cycling process
and free forecasts. For the data assimilation cycling, the mean

TABLE 4. Physics scheme configuration for each ensemble member.

Ensemble member PBL scheme SW radiation scheme LW radiation scheme

1, 7, 13, 19, 25, 31 SH Dudhia RRTM
2, 8, 14, 20, 26, 32 SH RRTMG RRTMG
3, 9, 15, 21, 27, 33 MYJ Dudhia RRTM
4, 10, 16, 22, 28, 34 MYJ RRTMG RRTMG
5, 11, 17, 23, 29, 35 MYNN Dudhia RRTM
6, 12, 18, 24, 30, 36 MYNN RRTMG RRTMG

TABLE 5. Observation types and their assumed errors and
horizontal and vertical localization radii.

Observation type Error
H local
(km)

V local
[ln(p/pref)]

Temperature 1.0 K 60.0 0.85
Dewpoint temperature 1.0 K 60.0 0.85
u wind 1.0 m s21 60.0 0.85
y wind 1.0 m s21 60.0 0.85
Surface pressure 0.75 hPa 60.0 0.85
Reflectivity 5.0 dBZ 6.0 0.80
Clear-air reflectivity 5.0 dBZ 6.0 0.80
Radial velocity 3.0 m s21 6.0 0.80

TABLE 6. Experiment names and their descriptions.

Expt name Expt description

Control 5-min cycling with no stochastic or perturbed
parameter methods

SKEB SKEB scheme only
PSP PSP scheme only
FPP FPP method only
SMSB SMSB method only
AllStoch All stochastic and perturbed parameter

methods used
NoSKEB Only PSP, FPP, and SMSB used
NoPSP Only SKEB, FPP, and SMSB used
NoFPP Only SKEB, PSP, and SMSB used
NoSMSB Only SKEB, PSP, and FPP used
Control2.5 As in Control, but with 2.5-min cycling
NoPSP2.5 As in NoPSP, but with 2.5-min cycling
Control15 As in Control, but with 15-min cycling
NoPSP15 As in NoPSP, but with 15-min cycling
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innovation [Eq. (5) in Aksoy et al. 2009], root mean square in-
novation [RMSI; Eq. (4.1) in Dowell et al. 2011], total ensem-
ble spread, which includes the observation errors [Eq. (3.3) in
Dowell and Wicker 2009], and consistency ratio, which is the
total ensemble spread divided by RMSI [Eq. (3.4) in Dowell
and Wicker 2009], are computed at each data assimilation
time for the prior and posterior model states. For consistency
ratio, values near 1 represent an optimally dispersive ensem-
ble. The model variables used in the data assimilation diagnos-
tics include reflectivity, radial velocity, 1.5 m AGL temperature,
and 10 m AGL horizontal wind, while the associated observa-
tions include PAR reflectivity and radial velocity observations
and Oklahoma Mesonet 1.5 m AGL temperature and 10 m
AGL horizontal wind observations. For the free forecasts, only
RMSI and ensemble spread (i.e., without observation errors)
are computed using forecast composite reflectivity, 2 m AGL
temperature, 2 m AGL dewpoint temperature, and 10 m AGL
horizontal wind components from the model forecasts along
with Multi-Radar Multi-Sensor (MRMS; Smith et al. 2016) com-
posite reflectivity and Oklahoma Mesonet 1.5 m AGL tempera-
ture, 1.5 m AGL dewpoint temperature, and 10 m AGL
horizontal wind components.

The WoFS is designed to provide probabilistic guidance of
individual storms, so this study will assess the impacts of the
stochastic and perturbed parameter methods using two storm-
related fields}reflectivity and updraft helicity (UH; Kain et al.
2008). For UH, the probability of 2–5-km UH (UH25) greater
than 400 m2 s22 is subjectively compared to the 2–5-km rota-
tion fields (Miller et al. 2013) from the MRMS system. For
UH probabilities, the maximum UH values are aggregated to-
gether through the forecast period for each ensemble member
to form UH swaths. Next, the neighborhood ensemble maxi-
mum probability (Schwartz and Sobash 2017) fields are com-
puted for UH values greater than 400 m2 s22 using a 3 3 3
gridpoint window. To better highlight the differences between
the stochastic and Control experiments, the difference in the
UH probability fields are shown for the stochastic experi-
ments. For MRMS rotation fields, the maximum rotation val-
ues are aggregated together through the forecast periods and
then smoothed using a maximum-filter over a 3 3 3 gridpoint
window.

For reflectivity, forecast composite reflectivity is objectively
compared to MRMS composite reflectivity by computing the
ensemble fractions skill score (eFSS; Duc et al. 2013):

eFSS 5 1 2
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where N is the number of neighborhood windows, M is the
number of ensemble members, and Po and Pf are the ob-
served and forecast fractions, respectively, within each spatial
window that exceed a threshold. The eFSS is an extension of
the fractions skill score from Roberts and Lean (2008), but
with the inclusion of the ensemble member dimension. For
this study, the eFSS is computed using observed and forecast

composite reflectivity values greater than 35 dBZ and a
16-km neighborhood window width. An eFSS value of 1 indi-
cates perfect skill, while a value of 0 indicates no skill. eFSS
values less than 1 can be due to a combination of displace-
ment errors and biases associated with the number and size of
storms, so to understand the role of the biases on the eFSS
values, the average asymptotic eFSS (AeFSS; Roberts and
Lean 2008) is also computed for each experiment’s ensemble
forecast using the equation:

AeFSS 5
2FoFf

(Fo)2 1 (Ff )2 , (5)

where F o is the observed fraction for the entire domain and
Ff is the forecast fraction for the entire domain and ensemble.
AeFSS values less than 1 indicate a bias, which can be due to
an overprediction or underprediction of reflectivity.

4. Results

a. Individual method experiments

1) OBSERVATION-SPACE DIAGNOSTICS

To assess the impact of the stochastic and perturbed param-
eter methods on ensemble errors and spread, observation-
space diagnostics are computed for the background forecasts
and analyses during the data assimilation cycling for some of
the assimilated observation types. Starting with reflectivity,
the FPP method results in analyses with the smallest mean
innovations until 2015 UTC and smallest RSMIs through
2100 UTC, while leading to background forecasts with the
largest total ensemble spread through 2100 UTC (Figs. 7a–c).
The other methods generally result in similar ensemble errors
and spread as the Control experiment. The consistency ratios
for background forecasts of reflectivity are highly variable be-
tween each data assimilation time and are similar among the
experiments with values gradually approaching 1 and becom-
ing less underdispersive (Fig. 7d). For radial velocity, all of
the error and spread diagnostics are mostly similar among
the experiments (Figs. 7e–g). Even so, the stochastic and
perturbed parameter method experiments generally have
higher consistency ratios than the Control experiment after
2000 UTC, indicating the various methods are contributing to
higher spread-to-error ratios (Fig. 7h). For 1.5 m AGL tem-
perature, the SMSB method consistently results in the small-
est mean innovations in the background forecasts and
analyses through the data assimilation period (Fig. 7i). After
1930 UTC, the SMSB method also largely results in smaller
RMSIs (Fig. 7j). The total ensemble spread and consistency
ratio are mostly similar across the experiments for 1.5 m AGL
temperature (Figs. 7k,l). While not shown, these results are
also consistent for 1.5 m AGL dewpoint temperature. For y
wind, the SKEB scheme results in the smallest mean innova-
tions and RMSIs in the background forecasts and analyses for
most data assimilation times (Figs. 7m,n). The SKEB scheme
also results in the largest spread at most times, which in com-
bination with lower RMSIs results in higher consistency ratios
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than the other experiments for most data assimilation times
(Figs. 7o,p).

To assess the impact of the stochastic perturbation methods
on ensemble forecast errors and spread, RMSI and ensemble
spread are computed for various variables during the four fore-
cast periods. Beginning with composite reflectivity, the SKEB
scheme results in the smallest errors for most forecast times in
the forecasts initialized at 2000 and 2030 UTC (Figs. 8a,b). The
FPP method results in the largest ensemble spread during the
earlier times of each forecast, while the SKEB scheme results in
the largest ensemble spread during the later forecast times
(Figs. 8a–d). Conversely, the SMSB method consistently results

in the smallest spread for all forecasts. For near-surface tempera-
ture and dewpoint temperature, the SMSB method results in the
smallest errors for most forecast times, while generally having
similar or slightly smaller ensemble spread than the other experi-
ments (Figs. 8e–l). The differences in RMSI and spread for the
10 m AGL horizontal wind components are mostly similar among
the different experiments through all forecast periods (Figs. 8m–t).
Except for composite reflectivity before 2100 UTC in the
2000 UTC initialized forecast, all ensemble experiments are under-
dispersive for all five variables. How these ensemble error and
spread results from the observation-space diagnostics translate to
forecasts of storm-related fields will be explored next.

FIG. 7. Mean innovation, RMSI, total ensemble spread, and consistency ratio of (a)–(d) reflectivity (dBZ), (e)–(h) radial velocity (m s21),
(i)–(l) 1.5 m AGL temperature (8C), and (m)–(p) 10 m AGL y-wind (m s21) for background forecasts (bolder lines) and analyses
(fainter lines) from the Control and individual stochastic and perturbed parameter method experiments. Vertical gray dashed lines highlight
forecast initialization times. Horizontal black dashed lines in the total ensemble spread plots in (c), (g), (k), and (o) depict the observation
errors for each observation type.
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2) ENSEMBLE FORECAST RESULTS

To assess the impact of the stochastic and perturbed param-
eter methods on the skill and accuracy of the ensemble fore-
casts, both subjective and objective evaluation methods are
used with the UH25 and composite reflectivity fields, respec-
tively. Starting with UH25, the Control experiment produces
probabilities over 40% near the start of S1’s rotation track in the
ensemble forecast initialized at 2000UTC, but has lower probabili-
ties for the remainder of the track (Fig. 9a). The SKEB and FPP

experiments produce larger probabilities than the Control experi-
ment formost of S1’s rotation track (Figs. 9b,d), especially the FPP
experiment. The SMSB experiment also has larger probabilities
near the start of S1’s rotation track, but itmostly has smaller proba-
bilities for the remainder of the track (Fig. 9e). The PSP experi-
ment is the most similar to the Control experiment for the
forecasts initialized at 2000 UTC (Fig. 9c). For the forecasts initial-
ized at 2030 UTC, the SKEB, PSP, and FPP experiments produce
similarly good forecasts of S1’s rotation track as the Control exper-
iment with the PSP experiment producing the highest probabilities

FIG. 8. RMSI (solid lines) and ensemble spread (dashed lines) of (a)–(d) composite reflectivity (dBZ), (e)–(h) near-surface temperature
(8C), (i)–(l) near-surface dewpoint temperature (8C), (m)–(p) 10 m AGL u wind (m s21), and (q)–(t) 10 m AGL y wind (m s21) for the
Control and individual stochastic and perturbed parameter method forecasts initialized at 2000, 2030, 2100, and 2130 UTC.
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along the track (Figs. 9f–i). The SMSB experiment performs the
worst with the swath of higher probabilities deviating to the
north toward the end of S1’s track (Fig. 9j). While all of the ex-
periments’ forecasts initialized at 2100 UTC produce probabili-
ties over 80% along S1’s rotation track, the stochastic and
perturbed parameter experiments’ probability swaths are
slightly more accurate than the Control experiment’s probabil-
ity swath, which has a small northward bias (Figs. 9k–o). For
the final set of forecasts initialized at 2130UTC, all experiments
produce similarly accurate, high-confidence UH25 probability
swaths for S1 (Figs. 9p–t), but for S2’s rotation tracks, the sto-
chastic and perturbed parameter experiments, especially the
SMSB experiment, generally result in lower probabilities than
the Control experiment.

Next, the quantitative skill of the forecasts is evaluated for
composite reflectivity greater than 35 dBZ using the eFSS.
Since these comparisons involve single forecasts from the dif-
ferent experiments, no significance testing is done, but differ-
ences in eFSS greater than 0.05 between the stochastic and
perturbed parameter experiments and the Control experi-
ment are used as an indication of a substantial difference in
skill. Starting with the forecasts initialized at 2000 UTC, both
the SKEB and FPP experiments produce composite reflectiv-
ity forecasts that are more skillful than the other experiments,
including the Control experiment (Fig. 10a). The SKEB ex-
periment’s forecast is substantially and consistently more
skillful than the Control experiment’s forecast for almost the
entire forecast period. For the FPP experiment, the largest

FIG. 9. For the Control experiment, probabilities of 2–5-km UH . 400 m2 s22 for forecasts with initializations at 2000, 2030, 2100, and
2130 UTC are shown. For the stochastic and perturbed parameter experiments, the difference in probabilities of 2–5-km UH . 400 m2 s22

between the stochastic experiments and the Control experiment are shown along with light and dark gray transparent shadings and contours
for areas with probabilities greater than 20% and 40%, respectively. The nine-point maximum-filtered MRMS 2–5-km rotation field is con-
toured at 0.008 s21 (black contours). The average UH probability within the bounds of S1’s unfiltered rotation track, which is indicated in
(a) with the gray arrow, is annotated in the upper-right corner of each plot.
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difference in eFSS from the Control experiment occurs within
the first hour of the forecast, which is when S1 is developing
and maturing. Similar to its spread in composite reflectivity,
the FPP experiment’s skill gradually decreases and becomes
more similar to the Control’s experiment skill after 2200 UTC.
As alluded to by the UH25 results, the PSP experiment’s fore-
cast initialized at 2000 UTC is similarly skillful as the Control
experiment’s forecast, while the SMSB experiment’s forecast is
less skillful than the Control experiment’s forecast through
2145 UTC. For the last hour of the forecast, all of the experi-
ments are similarly skillful except for the SKEB experiment,
which is likely more skillful due to producing a better forecast for
S2 as is evident in the UH25 probability forecast (Fig. 9b). All ex-
periments’ forecasts have AeFSS values less than 1 indicating
bias (Fig. 10a). The bias in these forecasts}and all other experi-
ments’ forecasts in this study}are due to an underforecasting
bias (not shown), so the SKEB and FPP experiments have the
smallest underforecasting bias in this forecast.

Differences in forecast skill among the experiments are
smaller for the other three forecasts than for the first forecast.
For the forecasts initialized at 2030 UTC, differences among the
experiments do not develop until after 2115 UTC (Fig. 10b).
After this time, the SKEB experiment’s forecast is substantially
more skillful than the Control experiment’s forecast for only a
few forecast times, while the SMSB’s experiment’s forecast is
again the least skillful likely due to the deviation in forecast
storm track as shown in the UH25 results (Fig. 9j). The FPP
experiment’s forecast is slightly less skillful than the Control ex-
periment’s forecast for several forecast times. The PSP experi-
ment’s forecast is again similarly skillful to the Control
experiment’s forecast. For the forecasts initialized at 2100 UTC,
the stochastic and perturbed parameter experiments’ forecasts
are generally more skillful than the Control experiment’s fore-
cast, especially from 2200 to 2230 UTC for the SKEB, PSP, and
FPP experiments (Fig. 10c). This improvement in skill is at least
partly due to the slight northward displacement error of S1 as
evident by the Control experiment’s UH25 forecast (Fig. 9k).
For the forecasts initialized at 2130 UTC, the experiments’ fore-
casts are similarly skillful, except for the SMSB experiment,
which is substantially less skillful than the Control experiment
for several forecast times, and the PSP experiment, which is sub-
stantially more skillful for a few forecast times (Fig. 10d). The
SMSB experiment’s lower skill is at least partially due to having
a worse forecast for S2. Overall, the biggest impacts of the sto-
chastic and perturbed parameter methods occur in the forecasts
initialized at 2000 UTC with the SKEB scheme and FPP method
providing the most benefit, especially early on when S1 is devel-
oping in the forecasts.

b. Combination experiments

Ideally, multiple stochastic and perturbed parameter meth-
ods would be used in a WoFS-like system to account for dif-
ferent sources of model uncertainty, so this next set of
experiments explores some of the possible stochastic and per-
turbed parameter method combinations. For forecasts initial-
ized at 2000 UTC, the various combination experiments’
UH25 probabilities for S1 are generally similar to the Control
experiment’s probabilities (Figs. 11a–f). Even so, the NoPSP
and NoSMSB experiments, which have the SKEB scheme
and FPP method in common, mostly have higher probabilities
along S1’s rotation track than the Control experiment. The axis
of higher probabilities for the forecasts initialized at 2030 UTC
are generally too far north for all experiments (Figs. 11g–l), es-
pecially the AllStoch experiment likely due to the ensemble
analysis and subsequent forecast latching onto S1’s initial meso-
cyclone, which is depicted as the short rotation track to the
northwest of S1’s main rotation track (Fig. 11h). While the Con-
trol experiment’s forecast initialized at 2100 UTC continues to
have a northward bias, all of the combination experiments’
UH25 probability swaths are more accurate resulting in higher
probabilities along S1’s rotation track (Figs. 11m–r). Also, all of
the combination experiments’ forecasts produce higher UH25
probabilities for S1’s initial mesocyclone than the Control ex-
periment’s forecast indicating their analyses of S1 are better. In
the forecasts initialized at 2130 UTC, all of the combination

FIG. 10. Time series of eFSS for the Control and individual sto-
chastic and perturbed parameter experiments’ composite reflectiv-
ity forecasts. The average eFSS and AeFSS for each experiment’s
forecast is indicated by short lines on the left-hand and right-hand
sides, respectively, of each subplot. A 1 marker indicates when a
stochastic or perturbed parameter experiment has an eFSS more
than 0.05 higher than the Control experiment, and a 3 marker in-
dicates when a stochastic or perturbed parameter experiment has
an eFSS more than 0.05 lower than the Control experiment. The
brown lines represent the time periods of S1’s T1 and T2 and S2’s
T3 and T4.
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experiments predict S1’s rotation track similarly well, while the
Control experiment’s forecast still exhibits a small northward
bias (Figs. 11s–x). The largest differences among the experi-
ments for the final forecast stem from their predictions of S2’s
rotation tracks with the Control experiment having the highest
probabilities overlapping those areas.

The combination experiments’ composite reflectivity forecasts
initialized at 2000 UTC are substantially more skillful than the
Control experiment’s forecast for most forecast times leading up
to and during T1 and the start of T2, except for the NoFPP ex-
periment (Fig. 12a). This result highlights the beneficial impact
the FPP method provides during S1’s development. Later in the

forecast period, the NoFPP and NoSMSB experiments are sub-
stantially more skillful than the Control experiment for at least
few forecast times. For the forecasts initialized at 2030 UTC, the
combination experiments are similarly skillful for almost all fore-
cast times with average eFSS differences less than 0.08 (Fig. 12b).
Even so, the AllStoch and NoSKEB experiments are substantially
less skillful for several forecast times. The AllStoch, NoPSP, and
NoSMSB experiments produce similarly skillful forecasts for the
forecasts initialized at 2100UTC and are substantially more skillful
than the Control experiment for several forecast times (Fig. 12c).
For the forecasts initialized at 2130UTC, the differences in skill be-
tween the combination experiments and the Control experiment

FIG. 11. As in Fig. 9, but for the combination experiments.
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are again generally small (Fig. 12d). Except for the NoPSP experi-
ment, the other combination experiments have at least a couple of
forecast times with substantially less skill. Overall, for both the
UH25 and composite reflectivity results, the combination experi-
ments show that the SKEB scheme and FPP method provide the
most benefit when combined, especially during the first forecast
when S1 is developing andmaturing.

c. Cycling interval experiments

Since PAR technology allows for more frequent full-volumetric
scans of the atmosphere than current operational radar
technology, the ability to assimilate more frequent radar observa-
tions is possible for prediction systems like WoFS. This next set of
experiments explores the impact of stochastic and perturbed pa-
rameter methods at three different DA cycling intervals, including
the two previously shown 5-min DA cycling frequency experi-
ments, Control and NoPSP. For the forecasts initialized at
2000 UTC, the NoPSP2.5 experiment’s forecast mostly has higher
probabilities in S1’s rotation track than the Control2.5 experiment
(Figs. 13a,b). This result is similar to the previous 5-min cycling
experiments’ results shown here again (Figs. 13c,d). Both of the
15-min cycling experiments perform similarly poorly with proba-
bilities less than 10% within S1’s rotation track (Figs. 13e,f). Un-
like the 5-min cycling experiments where both experiments have
the highest probabilities over similar areas (Figs. 13i,j), the
NoPSP2.5 experiment’s higher-probability swath is more accurate

than the Control2.5 experiment’s swath for the forecasts initial-
ized at 2030 UTC (Figs. 13g,h). Both of the 15-min cycling experi-
ments’ UH25 probability swaths originate from S1’s initial
mesocyclone location and are thus too far north (Figs. 13k,l).
Also, the NoPSP15 experiment’s probabilities are smaller in S1’s
rotation track than the Control15 experiment’s probabilities, as
with the two 5-min cycling experiments.

For the forecasts initialized at 2100 UTC, the Control2.5 and
NoPSP2.5 experiments produce similar forecasts (Figs. 13m,n),
while larger differences exist for the two 5-min cycling experi-
ments, where the Control experiment’s probability swath is
too far north, as previously mentioned (Figs. 13o,p). Both of
the 15-min cycling experiments’ UH25 probability swaths are
similar and still too far north (Figs. 13q,r). The probability
swaths are similarly accurate for the 2.5-min cycling experi-
ments’ forecasts initialized at 2130 UTC (Figs. 13s,t), but
NoPSP2.5 undesirably has lower probabilities for the eastern
half of S1’s rotation track. Both experiments have poor fore-
casts for S2’s rotation tracks with no probabilities over 40%.
The 5- and 15-min cycling stochasticity experiments have higher
probabilities than their no-stochasticity counterparts for S1’s ro-
tation track while the opposite is true for S2’s rotation tracks
(Figs. 13u–x).

For eFSS, the NoPSP2.5 and NoPSP experiments are simi-
larly skillful than their respective counterparts, Control2.5 and
Control, for the forecasts initialized at 2000 UTC (Fig. 14a).
Both Control15 and NoPSP15 perform poorly, but their rela-
tively low skill is mostly due to inaccurate forecast storm loca-
tions rather than a bias in spatial coverage since their AeFSS
values are more similar to the NoPSP2.5 and NoPSP experi-
ments than the Control2.5 and Control experiments. For the
forecasts initialized at 2030 UTC, the 2.5- and 5-min cycling
experiments all have similar skill for the entire forecast period,
while the NoPSP experiment is substantially less skillful than
the Control15 experiment for several forecast times (Fig. 14b).
Both 15-min cycling experiments again have lower skill than
the 2.5- and 5-min cycling experiments. While the NoPSP
experiment is substantially more skillful than the Control
experiment for several times throughout the forecasts ini-
tialized at 2100 UTC, the NoPSP2.5 experiment is substan-
tially more skillful during the first hour of the forecast
period and substantially less skillful during the last 45 min
of the forecast period (Fig. 14c). The 15-min cycling experi-
ments are more similar in skill to the other cycling experi-
ments for this forecast, but still overall less skillful, while
NoPSP15 is still mostly less skillful than Control15. For the
final forecast initialized at 2130 UTC, the 2.5- and 5-min
DA cycling experiments perform more similar to their cy-
cling frequency counterparts than their stochastic counter-
parts (Fig. 14d). The 15-min cycling experiments continue to
be more similar to each other, but the NoPSP15 experiment
is now somewhat more skillful than the Control15 experi-
ment during the first hour of the forecast period.

In Stratman et al. (2020), the more frequent cycling experi-
ments were more skillful in forecasts initialized at earlier
times. In this study, that holds true when comparing the
5- and 15-min cycling experiments, but not for the 2.5- and

FIG. 12. As in Fig. 10, but for the combination experiments.
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5-min cycling experiments. This result is perhaps due to not
having forecasts initialized at earlier times than 2000 UTC.
Another result that agrees with the findings in Stratman et al.
(2020) is that skill eventually starts to decrease at later initial-
ized forecasts for the shorter cycling intervals. Ideally, the sto-
chastic and perturbed parameter methods would help combat
this decrease in skill by generating more ensemble spread and
helping prevent filter divergence, but that is not the result
here likely due to the model imbalances that develop from cy-
cling too frequently (Yang and Wang 2023). Even so, the ben-
eficial impacts of the stochastic and perturbed parameter
methods generally occur in earlier initialized forecasts for
shorter cycling intervals.

5. Summary and discussion

In this study, four stochastic and perturbed parameter
methods, including a new method, were tested within a 1-km-
scale version of the WoFS as a way to increase ensemble
spread during frequent PAR data assimilation cycling. PAR
technology allows for more frequent full-volumetric scans of
the atmosphere than the current dish-based operational
weather radars and is thus a candidate to replace those sys-
tems. The more frequent radar observations could benefit
storm-scale forecast systems like the experimental WoFS by
allowing for more frequent updates of the model analyses.
Using the temporally and spatially dense PAR observations
from the 9 May 2016 Oklahoma tornado outbreak, various

FIG. 13. As in Fig. 9, but for the cycling frequency experiments.
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experiments were conducted to explore the impacts of sto-
chastic and perturbed parameter methods individually, in dif-
ferent combinations, and with different cycling intervals.
While the results are preliminary since only a single case was

used for the experiments, some potentially important results
for future versions of WoFS emerged from these initial
experiments.

Perhaps the primary finding from this initial study is that
stochastic and perturbed parameter methods can improve
WoFS forecasts of storms when storms are developing and
maturing, which means more skillful forecasts of storms at
longer lead times. The beneficial impact of the stochastic and
perturbed parameter methods in a multi-physics setup gener-
ally decreased in later initialized forecasts when the storms
were more mature and not quickly developing or evolving.
Even so, some benefit remained in later initialized forecasts
as storms evolved or new storms developed. In the individual
method experiments, the SKEB and FPP methods performed
the best in the first initialized forecast when the first tornadic
supercell was developing (Fig. 15). The PSP scheme had the
smallest impact on the first forecast, but in later forecasts, the
PSP experiment generally performed better than the Control ex-
periment. While the novel SMSB method resulted in smaller
near-surface temperature and dewpoint temperature errors, the
SMSB experiment generally performed similar or worse than the
Control experiment.

Another important result from the experiments is that combin-
ing multiple stochastic and perturbed parameter methods can
sometimes produce better, more skillful forecasts than any indi-
vidual method. This result mostly agrees with previous studies
that found that adding uncertainty to the model physics in multi-
ple ways can result in more skillful forecasts than any single
method (e.g., Jankov et al. 2017). The two best performing com-
bination experiments were NoPSP and NoSMSB (Fig. 15), which
further highlights the success of the SKEB scheme and FPP
method in this study. The cycling interval experiments revealed
the stochastic and perturbed parameter methods can be benefi-
cial at all cycling intervals, but the beneficial impact was evident
in earlier forecasts for shorter cycling intervals (Fig. 15). In the

FIG. 14. As in Fig. 10, but for the cycling frequency experiments.

FIG. 15. Summary of results showing (left) average UH25 probabilities in S1’s rotation track and (right) average
eFSS for each experiment and forecast. Color shading highlights where experiments have higher probabilities or more
skill (green) and lower probabilities or less skill (purple).
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later initialized forecasts, the detrimental effects of model imbal-
ances along with possible filter divergence caused by cycling too
frequently were evident, indicating the stochastic and perturbed
parameter methods might not be enough to overcome these
issues.

As a next step of this work, the stochastic and perturbed pa-
rameter methods will be tested and further tuned in the experi-
mental WoFS-1km (Kerr et al. 2023; Wang et al. 2022) using
multiple severe weather events from different geographical loca-
tions to produce more robust conclusions. In the current experi-
mental WoFS, additive noise (Dowell and Wicker 2009; Sobash
and Wicker 2015) is used to help spin up storms in the analyses
and forecasts by generating spread in areas of convection, but ad-
ditive noise was withheld in these experiments to focus on the
impact of the stochastic and perturbed parameter methods.
Therefore, future experiments with the WoFS-1km will compare
the stochastic and perturbed parameter methods with different
additive noise techniques.

While four stochastic and perturbed parameter methods were
implemented and tested in this study, other methods exist and
may be beneficial to prediction systems like the WoFS. For ex-
ample, the stochastic perturbation of physics tendencies (SPPT)
scheme (Buizza et al. 1999; Palmer et al. 2009), which perturbs
the physics tendencies using multiplicative noise, is another po-
tential way to represent uncertainty in physics parameterization
schemes. Also, while the FPP method performed well in this
study, another way to account for uncertainty in the microphysics
scheme is to use a stochastically perturbed parameter (SPP)
scheme (e.g., Ollinaho et al. 2017; Jankov et al. 2019; Lang et al.
2021; Thompson et al. 2021; McTaggart-Cowan et al. 2022), so a
SPP scheme will likely be implemented into the NSSL two-
moment microphysics scheme. The SMSBmethod had less bene-
fit than expected, so additional work is needed to determine why
it resulted in less skillful forecasts and if this outcome is specific
to this case and geographical location or if it is a more general
issue. If it is a recurring issue after many additional forecasts of
severe thunderstorm events are evaluated, then work will need
to be done to explore how to improve it}possibly through sto-
chastically blending other variables in the Noah-MP scheme or
stochastically blending only some of the variable options. Over-
all, though, the experiments in this study highlight the potential
benefits of the stochastic and perturbed parameter methods for
the next-generation WoFS, which will likely feature 1-km or less
horizontal grid spacing and even more frequent radar DA than
the current experimental WoFS permits.
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Lang, S., E. Hólm, M. Bonavita, and Y. Tremolet, 2019: A 50-
member ensemble of data assimilations. ECMWF Newsletter,
No. 158, ECMWF, Reading, United Kingdom, 27–29, https://
doi.org/10.21957/nb251xc4sl.

}}, S.-J. Lock, M. Leutbecher, P. Bechtold, and R. M. Forbes,
2021: Revision of the stochastically perturbed parametrisa-
tions model uncertainty scheme in the integrated forecasting
system. Quart. J. Roy. Meteor. Soc., 147, 1364–1381, https://
doi.org/10.1002/qj.3978.

Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J.
Comput. Phys., 227, 3515–3539, https://doi.org/10.1016/j.jcp.
2007.02.014.

}}, and Coauthors, 2017: Stochastic representations of model
uncertainties at ECMWF: State of the art and future vision.
Quart. J. Roy. Meteor. Soc., 143, 2315–2339, https://doi.org/10.
1002/qj.3094.

Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simu-
lated storm electrification and precipitation in a two-moment
bulk microphysics model. J. Atmos. Sci., 70, 2032–2050,
https://doi.org/10.1175/JAS-D-12-0264.1.

}}, }}, and E. C. Bruning, 2010: Simulated electrification of a
small thunderstorm with two-moment bulk microphysics. J. At-
mos. Sci., 67, 171–194, https://doi.org/10.1175/2009JAS2965.1.

McTaggart-Cowan, R., and Coauthors, 2022: Using stochastically
perturbed parameterizations to represent model uncertainty.
Part I: Implementation and parameter sensitivity. Mon. Wea.
Rev., 150, 2829–2858, https://doi.org/10.1175/MWR-D-21-0315.1.

Mellor, G. L., and T. Yamada, 1982: Development of a turbulence
closure model for geophysical fluid problems. Rev. Geophys.,
20, 851–875, https://doi.org/10.1029/RG020i004p00851.

Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter
for mesoscale and regional-scale data assimilation. Part II:
Imperfect model experiments. Mon. Wea. Rev., 135, 1403–
1423, https://doi.org/10.1175/MWR3352.1.

Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An auto-
mated method for depicting mesocyclone paths and intensi-
ties. Wea. Forecasting, 28, 570–585, https://doi.org/10.1175/
WAF-D-12-00065.1.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and
S. A. Clough, 1997: Radiative transfer for inhomogeneous at-
mospheres: RRTM, a validated correlated-k model for the
longwave. J. Geophys. Res., 102, 16 663–16 682, https://doi.
org/10.1029/97JD00237.

Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J.
Webb, M. Collins, and D. A. Stainforth, 2004: Quantification
of modelling uncertainties in a large ensemble of climate
change simulations. Nature, 430, 768–772, https://doi.org/10.
1038/nature02771.

Nakanishi, M., and H. Niino, 2009: Development of an improved
turbulence closure model for the atmospheric boundary
layer. J. Meteor. Soc. Japan, 87, 895–912, https://doi.org/10.
2151/jmsj.87.895.

Niu, G.-Y., and Coauthors, 2011: The community Noah land sur-
face model with multi-parameterization options (Noah-MP):
1. Model description and evaluation with local-scale measure-
ments. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/
2010JD015139.

NOAA/NWS, 2016: The severe weather and tornado outbreak of
May 9, 2016. NOAA/NWS, accessed 20 January 2023, https://
www.weather.gov/oun/events-20160509.

Ollinaho, P., and Coauthors, 2017: Towards process-level repre-
sentation of model uncertainties: Stochastically perturbed
parametrizations in the ECMWF ensemble. Quart. J. Roy.
Meteor. Soc., 143, 408–422, https://doi.org/10.1002/qj.2931.

Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leut-
becher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009:
Stochastic parametrization and model uncertainty. ECMWF
Tech. Memo. 598, 42 pp., https://www.ecmwf.int/en/elibrary/
75936-stochastic-parametrization-and-model-uncertainty.

Rasp, S., T. Selz, and G. C. Craig, 2018: Variability and clustering
of midlatitude summertime convection: Testing the Craig and
Cohen theory in a convection-permitting ensemble with sto-
chastic boundary layer perturbations. J. Atmos. Sci., 75, 691–
706, https://doi.org/10.1175/JAS-D-17-0258.1.

Roberts, B., I. L. Jirak, A. J. Clark, S. J. Weiss, and J. S. Kain,
2019: Postprocessing and visualization techniques for convec-
tion-allowing ensembles. Bull. Amer. Meteor. Soc., 100, 1245–
1258, https://doi.org/10.1175/BAMS-D-18-0041.1.

Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification
of rainfall accumulations from high-resolution forecasts of
convective events. Mon. Wea. Rev., 136, 78–97, https://doi.
org/10.1175/2007MWR2123.1.

Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder,
J. L. Anderson, and M. L. Weisman, 2014: Representing fore-
cast error in a convection-permitting ensemble system. Mon.
Wea. Rev., 142, 4519–4541, https://doi.org/10.1175/MWR-D-
14-00100.1.

Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic
forecasts from convection-allowing ensembles using neighbor-
hood approaches: A review and recommendations. Mon.
Wea. Rev., 145, 3397–3418, https://doi.org/10.1175/MWR-D-
16-0400.1.

}}, M. Wong, G. S. Romine, R. A. Sobash, and K. R. Fossell,
2020: Initial conditions for convection-allowing ensembles
over the conterminous United States. Mon. Wea. Rev., 148,
2645–2669, https://doi.org/10.1175/MWR-D-19-0401.1.

}}, J. Poterjoy, G. S. Romine, D. C. Dowell, J. R. Carley, and
J. Bresch, 2022: Short-term convection-allowing ensemble
precipitation forecast sensitivity to resolution of initial condi-
tion perturbations and central initial states. Wea. Forecasting,
37, 1259–1286, https://doi.org/10.1175/WAF-D-21-0165.1.

Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-
scale turbulent transport in convective boundary layers at
gray-zone resolutions. Mon. Wea. Rev., 143, 250–271, https://
doi.org/10.1175/MWR-D-14-00116.1.

Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use
in ensemble prediction systems. Quart. J. Roy. Meteor. Soc.,
131, 3079–3102, https://doi.org/10.1256/qj.04.106.

Skamarock, W. C., and Coauthors, 2008: A description of the Ad-
vanced Research WRF version 3. NCAR Tech. Note NCAR/
TN-4751STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

Skinner, P. S., and Coauthors, 2018: Object-based verification of a
prototype Warn-on-Forecast System. Wea. Forecasting, 33,
1225–1250, https://doi.org/10.1175/WAF-D-18-0020.1.

Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor
(MRMS) severe weather and aviation products: Initial oper-
ating capabilities. Bull. Amer. Meteor. Soc., 97, 1617–1630,
https://doi.org/10.1175/BAMS-D-14-00173.1.

S T RA TMAN E T A L . 453FEBRUARY 2024

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/02/24 04:57 PM UTC

https://doi.org/10.1175/WAF1009.1
https://doi.org/10.1175/WAF1009.1
https://doi.org/10.21957/nb251xc4sl
https://doi.org/10.21957/nb251xc4sl
https://doi.org/10.1002/qj.3978
https://doi.org/10.1002/qj.3978
https://doi.org/10.1016/j.jcp.2007.02.014
https://doi.org/10.1016/j.jcp.2007.02.014
https://doi.org/10.1002/qj.3094
https://doi.org/10.1002/qj.3094
https://doi.org/10.1175/JAS-D-12-0264.1
https://doi.org/10.1175/2009JAS2965.1
https://doi.org/10.1175/MWR-D-21-0315.1
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1175/MWR3352.1
https://doi.org/10.1175/WAF-D-12-00065.1
https://doi.org/10.1175/WAF-D-12-00065.1
https://doi.org/10.1029/97JD00237
https://doi.org/10.1029/97JD00237
https://doi.org/10.1038/nature02771
https://doi.org/10.1038/nature02771
https://doi.org/10.2151/jmsj.87.895
https://doi.org/10.2151/jmsj.87.895
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1029/2010JD015139
https://www.weather.gov/oun/events-20160509
https://www.weather.gov/oun/events-20160509
https://doi.org/10.1002/qj.2931
https://www.ecmwf.int/en/elibrary/75936-stochastic-parametrization-and-model-uncertainty
https://www.ecmwf.int/en/elibrary/75936-stochastic-parametrization-and-model-uncertainty
https://doi.org/10.1175/JAS-D-17-0258.1
https://doi.org/10.1175/BAMS-D-18-0041.1
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/2007MWR2123.1
https://doi.org/10.1175/MWR-D-14-00100.1
https://doi.org/10.1175/MWR-D-14-00100.1
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1175/MWR-D-16-0400.1
https://doi.org/10.1175/MWR-D-19-0401.1
https://doi.org/10.1175/WAF-D-21-0165.1
https://doi.org/10.1175/MWR-D-14-00116.1
https://doi.org/10.1175/MWR-D-14-00116.1
https://doi.org/10.1256/qj.04.106
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1175/WAF-D-18-0020.1
https://doi.org/10.1175/BAMS-D-14-00173.1


Sobash, R. A., and L. J. Wicker, 2015: On the impact of additive
noise in storm-scale EnKF experiments. Mon. Wea. Rev.,
143, 3067–3086, https://doi.org/10.1175/MWR-D-14-00323.1.

Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial
condition and model physics perturbations in short-range en-
semble simulations of mesoscale convective systems. Mon.
Wea. Rev., 128, 2077–2107, https://doi.org/10.1175/1520-
0493(2000)128,2077:UICAMP.2.0.CO;2.

}}, and Coauthors, 2009: Convective-scale Warn-on-Forecast
System: A vision for 2020. Bull. Amer. Meteor. Soc., 90,
1487–1500, https://doi.org/10.1175/2009BAMS2795.1.

}}, and Coauthors, 2013: Progress and challenges with Warn-
on-Forecast. Atmos. Res., 123, 2–16, https://doi.org/10.1016/j.
atmosres.2012.04.004.

Stratman, D. R., N. Yussouf, Y. Jung, T. A. Supinie, M. Xue,
P. S. Skinner, and B. J. Putnam, 2020: Optimal temporal fre-
quency of NSSL phased-array radar observations for an ex-
perimental Warn-on-Forecast System. Wea. Forecasting, 35,
193–214, https://doi.org/10.1175/WAF-D-19-0165.1.

Thompson, G., J. Berner, M. Frediani, J. A. Otkin, and S. M. Grif-
fin, 2021: A stochastic parameter perturbation method to repre-
sent uncertainty in a microphysics scheme. Mon. Wea. Rev.,
149, 1481–1497, https://doi.org/10.1175/MWR-D-20-0077.1.

Vié, B., O. Nuissier, and V. Ducrocq, 2011: Cloud-resolving en-
semble simulations of Mediterranean heavy precipitation
events: Uncertainty on initial conditions and lateral boundary
conditions. Mon. Wea. Rev., 139, 403–423, https://doi.org/10.
1175/2010MWR3487.1.

Wang, Y., N. Yussouf, C. A. Kerr, D. R. Stratman, and B. C.
Matilla, 2022: An experimental 1-km Warn-on-Forecast Sys-
tem for hazardous weather events. Mon. Wea. Rev., 150,
3081–3102, https://doi.org/10.1175/MWR-D-22-0094.1.

Weber, M., J. Y. N. Cho, J. S. Herd, J. M. Flavin, W. E. Benner,
and G. S. Torok, 2007: The next-generation multimission
U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88,
1739–1752, https://doi.org/10.1175/BAMS-88-11-1739.

}}, and Coauthors, 2021: Toward the next generation opera-
tional meteorological radar. Bull. Amer. Meteor. Soc., 102,
E1357–E1383, https://doi.org/10.1175/BAMS-D-20-0067.1.

Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager,
2015: Storm-scale data assimilation and ensemble forecasting
with the NSSL experimental Warn-on-Forecast System. Part I:
Radar data experiments. Wea. Forecasting, 30, 1795–1817,
https://doi.org/10.1175/WAF-D-15-0043.1.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimila-
tion without perturbed observations. Mon. Wea. Rev., 130,
1913–1924, https://doi.org/10.1175/1520-0493(2002)130,1913:
EDAWPO.2.0.CO;2.

}}, and }}, 2012: Evaluating methods to account for system
errors in ensemble data assimilation. Mon. Wea. Rev., 140,
3078–3089, https://doi.org/10.1175/MWR-D-11-00276.1.

Yang, Y., and X. Wang, 2023: Impact of radar reflectivity data as-
similation frequency on convection-allowing forecasts of di-
verse cases over the continental United States. Mon. Wea.
Rev., 151, 341–362, https://doi.org/10.1175/MWR-D-22-0095.1.

Yang, Z.-L., and Coauthors, 2011: The community Noah land sur-
face model with multi-parameterization options (Noah-MP):
2. Evaluation over global river basins. J. Geophys. Res., 116,
D12110, https://doi.org/10.1029/2010JD015140.

Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and
D. J. Stensrud, 2013: The ensemble Kalman filter analyses
and forecasts of the 8 May 2003 Oklahoma City tornadic
supercell storm using single- and double-moment microphys-
ics schemes. Mon. Wea. Rev., 141, 3388–3412, https://doi.org/
10.1175/MWR-D-12-00237.1.

Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate
and observation availability on convective-scale data assimila-
tion with an ensemble Kalman filter. Mon. Wea. Rev., 132,
1238–1253, https://doi.org/10.1175/1520-0493(2004)132,1238:
IOIEAO.2.0.CO;2.

Zhang, X., 2019: Multiscale characteristics of different-source per-
turbations and their interactions for convection-permitting
ensemble forecasting during SCMREX. Mon. Wea. Rev., 147,
291–310, https://doi.org/10.1175/MWR-D-18-0218.1.

Zhou, X., and Coauthors, 2022: The development of the NCEP
Global Ensemble Forecast System version 12. Wea. Forecast-
ing, 37, 1069–1084, https://doi.org/10.1175/WAF-D-21-0112.1.

MONTHLY WEATHER REV I EW VOLUME 152454

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/02/24 04:57 PM UTC

https://doi.org/10.1175/MWR-D-14-00323.1
https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2
https://doi.org/10.1175/2009BAMS2795.1
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1175/WAF-D-19-0165.1
https://doi.org/10.1175/MWR-D-20-0077.1
https://doi.org/10.1175/2010MWR3487.1
https://doi.org/10.1175/2010MWR3487.1
https://doi.org/10.1175/MWR-D-22-0094.1
https://doi.org/10.1175/BAMS-88-11-1739
https://doi.org/10.1175/BAMS-D-20-0067.1
https://doi.org/10.1175/WAF-D-15-0043.1
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/MWR-D-22-0095.1
https://doi.org/10.1029/2010JD015140
https://doi.org/10.1175/MWR-D-12-00237.1
https://doi.org/10.1175/MWR-D-12-00237.1
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1175/MWR-D-18-0218.1
https://doi.org/10.1175/WAF-D-21-0112.1

